A Multivariate Arithmetic Function of Combinatorial and Topological Significance

نویسنده

  • Valery A. Liskovets
چکیده

We investigate properties of a multivariate function E(m1,m2, . . . ,mr), called orbicyclic, that arises in enumerative combinatorics in counting non-isomorphic maps on orientable surfaces. E(m1,m2, . . . ,mr) proves to be multiplicative, and a simple formula for its calculation is provided. It is shown that the necessary and sufficient conditions for this function to vanish are equivalent to familiar Harvey’s conditions that characterize possible branching data of finite cyclic automorphism groups of Riemann surfaces.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ENTROPY OF GEODESIC FLOWS ON SUBSPACES OF HECKE SURFACE WITH ARITHMETIC CODE

There are dierent ways to code the geodesic flows on surfaces with negative curvature. Such code spaces give a useful tool to verify the dynamical properties of geodesic flows. Here we consider special subspaces of geodesic flows on Hecke surface whose arithmetic codings varies on a set with innite alphabet. Then we will compare the topological complexity of them by computing their topological ...

متن کامل

Some topological indices of graphs and some inequalities

Let G be a graph. In this paper, we study the eccentric connectivity index, the new version of the second Zagreb index and the forth geometric–arithmetic index.. The basic properties of these novel graph descriptors and some inequalities for them are established.

متن کامل

Arithmetic Teichmuller Theory

By Grothedieck's Anabelian conjectures, Galois representations landing in outer automorphism group of the algebraic fundamental group which are associated to hyperbolic smooth curves defined over number fields encode all arithmetic information of these curves. The goal of this paper is to develope and arithmetic teichmuller theory, by which we mean, introducing arithmetic objects summarizing th...

متن کامل

Effective Topological Degree Computation Based on Interval Arithmetic

We describe a new algorithm for calculating the topological degree deg (f, B, 0) where B ⊆ Rn is a product of closed real intervals and f : B → Rn is a real-valued continuous function given in the form of arithmetical expressions. The algorithm cleanly separates numerical from combinatorial computation. Based on this, the numerical part provably computes only the information that is strictly ne...

متن کامل

ARITHMETIC-BASED FUZZY CONTROL

Fuzzy control is one of the most important parts of fuzzy theory for which several approaches exist. Mamdani uses $alpha$-cuts and builds the union of the membership functions which is called the aggregated consequence function. The resulting function is the starting point of the defuzzification process. In this article, we define a more natural way to calculate the aggregated consequence funct...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009